Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in / Register
  • C curriculum
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 4
    • Issues 4
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • mathematics
  • curriculum
  • Wiki
  • Теорема Татта о совершенном паросочетании

Теорема Татта о совершенном паросочетании · Changes

Page history
Update Теорема Татта о совершенном паросочетании authored Nov 20, 2021 by Mariya Senina's avatar Mariya Senina
Hide whitespace changes
Inline Side-by-side
Showing with 1 addition and 1 deletion
+1 -1
  • Теорема-Татта-о-совершенном-паросочетании.md Теорема-Татта-о-совершенном-паросочетании.md +1 -1
  • No files found.
Теорема-Татта-о-совершенном-паросочетании.md
View page @ ed09cf20
......@@ -66,4 +66,4 @@ $`M_2`$ -- совершенное паросочетание на $`G^* + yw`$
<img src="uploads/c21acaf3b41d4dcd3a37b1883b7d4d8b/tatt-theorem-7.png" width="100%" height="100%">
Из леммы мы получаем, что $`G^* - U`$ -- объединение несвязных полных графов.
Эти графы снова могут быть чётными и нечётными компонентами. Нечётных полных графов $`\leq |U|`$ т.к. $`G^*`$ -- чётный. Во всех чётных компонентах можно выделить паросочетание покрывающее все вершины компоненты (потому что компоненты -- полные графы). В нечётных одну не покрытую паросочетанием вершину соединим с U (там все вершины соединены со всеми остальными, и их $`o(G*-U) \leg |U|`$ значит такое ребро есть и его можно взять в паросочетание). Не покрытые вершины в U можно соединить друг с другом и тоже взять в паросочетание. Значит мы сможем покрыть все вершины паросочетанием и получить совершенное паросочетание. А значит у нас есть противоречие с тем, что мы брали $`G^*`$ -- как надграф G без совершенного паросочетания -- такого графа не существует. Значит и в исходном G есть совершенное паросочетание. Значит теорема доказана.
Эти графы снова могут быть чётными и нечётными компонентами. Нечётных полных графов $`\leq |U|`$ т.к. $`G^*`$ -- чётный. Во всех чётных компонентах можно выделить паросочетание покрывающее все вершины компоненты (потому что компоненты -- полные графы). В нечётных одну не покрытую паросочетанием вершину соединим с U (там все вершины соединены со всеми остальными, и их $`o(G*-U) \leq |U|`$ значит такое ребро есть и его можно взять в паросочетание). Не покрытые вершины в U можно соединить друг с другом и тоже взять в паросочетание. Значит мы сможем покрыть все вершины паросочетанием и получить совершенное паросочетание. А значит у нас есть противоречие с тем, что мы брали $`G^*`$ -- как надграф G без совершенного паросочетания -- такого графа не существует. Значит и в исходном G есть совершенное паросочетание. Значит теорема доказана.
Clone repository
  • Home
  • Отношения и отображения на множестве
  • Решения контрольной по комбинаторике 1 вариант
  • Теорема Татта о совершенном паросочетании